Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Life Sci ; 301: 120602, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1814923

ABSTRACT

Megakaryocytes (MKs) are typical cellular components in the circulating blood flowing from the heart into the lungs. Physiologically, MKs function as an important regulator of platelet production and immunoregulation. However, dysfunction in MKs is considered a trigger in various diseases. It has been described that the lung is an important site of platelet biogenesis from extramedullary MKs, which may play an essential role in various pulmonary diseases. With detailed studies, there are different degrees of numerical changes of MKs in coronavirus disease 2019 (COVID-19), acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), lung cancer, pulmonary fibrosis (PF), and other pulmonary diseases. Also, MKs inhibit or promote the development of pulmonary diseases through various pathways. Here, we summarize the current knowledge of MKs in pulmonary diseases, highlighting the physiological functions and integrated molecular mechanisms. We aim to shine new light on not only the subsequent study of MKs but also the diagnosis and treatment of pulmonary diseases.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Blood Platelets , Humans , Lung , Megakaryocytes , Thrombopoiesis
2.
Front Immunol ; 12: 738073, 2021.
Article in English | MEDLINE | ID: covidwho-1497076

ABSTRACT

The mechanisms underlying the immune remodeling and severity response in coronavirus disease 2019 (COVID-19) are yet to be fully elucidated. Our comprehensive integrative analyses of single-cell RNA sequencing (scRNAseq) data from four published studies, in patients with mild/moderate and severe infections, indicate a robust expansion and mobilization of the innate immune response and highlight mechanisms by which low-density neutrophils and megakaryocytes play a crucial role in the cross talk between lymphoid and myeloid lineages. We also document a marked reduction of several lymphoid cell types, particularly natural killer cells, mucosal-associated invariant T (MAIT) cells, and gamma-delta T (γδT) cells, and a robust expansion and extensive heterogeneity within plasmablasts, especially in severe COVID-19 patients. We confirm the changes in cellular abundances for certain immune cell types within a new patient cohort. While the cellular heterogeneity in COVID-19 extends across cells in both lineages, we consistently observe certain subsets respond more potently to interferon type I (IFN-I) and display increased cellular abundances across the spectrum of severity, as compared with healthy subjects. However, we identify these expanded subsets to have a more muted response to IFN-I within severe disease compared to non-severe disease. Our analyses further highlight an increased aggregation potential of the myeloid subsets, particularly monocytes, in COVID-19. Finally, we provide detailed mechanistic insights into the interaction between lymphoid and myeloid lineages, which contributes to the multisystemic phenotype of COVID-19, distinguishing severe from non-severe responses.


Subject(s)
COVID-19/immunology , Killer Cells, Natural/immunology , Mucosal-Associated Invariant T Cells/immunology , Neutrophils/immunology , SARS-CoV-2/physiology , Systemic Inflammatory Response Syndrome/immunology , T-Lymphocytes/immunology , COVID-19/diagnosis , Cell Differentiation , Cell Proliferation , Humans , Immunity, Innate , Interferon Type I/metabolism , Lymphopoiesis , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Sequence Analysis, RNA , Single-Cell Analysis , Systemic Inflammatory Response Syndrome/diagnosis , T-Lymphocytes/metabolism , Thrombopoiesis
3.
Cytokine ; 146: 155634, 2021 10.
Article in English | MEDLINE | ID: covidwho-1293703

ABSTRACT

Thrombopoietin (TPO) is most recognized for its function as the primary regulator of megakaryocyte (MK) expansion and differentiation. MKs, in turn, are best known for their role in platelet production. Research indicates that MKs and platelets play an extensive role in the pathologic thrombosis at sites of high inflammation. TPO, therefore, is a key mediator of thromboinflammation. Silencing of TPO has been shown to decrease platelets levels and rates of pathologic thrombosis in patients with various inflammatory disorders (Barrett et al, 2020; Bunting et al, 1997; Desai et al, 2018; Kaser et al, 2001; Shirai et al, 2019). Given the high rates of thromboinflammmation in the novel coronavirus 2019 (COVID-19), as well as the well-documented aberrant MK activity in affected patients, TPO silencing offers a potential therapeutic modality in the treatment of COVID-19 and other pathologies associated with thromboinflammation. The current review explores the current clinical applications of TPO silencing and offers insight into a potential role in the treatment of COVID-19.


Subject(s)
COVID-19/therapy , Gene Silencing , Inflammation/genetics , Thrombocytosis/genetics , Thrombopoietin/genetics , Thrombosis/genetics , COVID-19/complications , COVID-19/virology , Humans , Inflammation/complications , Inflammation/metabolism , Megakaryocytes/metabolism , SARS-CoV-2/physiology , Thrombocytosis/complications , Thrombocytosis/metabolism , Thrombopoiesis/genetics , Thrombopoietin/metabolism , Thrombosis/complications , Thrombosis/metabolism
4.
Br J Haematol ; 194(3): 530-536, 2021 08.
Article in English | MEDLINE | ID: covidwho-1270823

ABSTRACT

COVID-19, caused by SARS-CoV-2, is a contagious life-threatening viral disease that has killed more than three million people worldwide to date. Attempts have been made to identify biomarker(s) to stratify disease severity and improve treatment and resource allocation. Patients with SARS-COV-2 infection manifest with a higher inflammatory response and platelet hyperreactivity; this raises the question of the role of thrombopoiesis in COVID-19 infection. Immature platelet fraction (IPF, %) and immature platelet counts (IPC, ×109 /l) can be used to assess thrombopoiesis. This study investigates whether the level of thrombopoiesis correlates with COVID-19 severity. A large cohort of 678 well-characterized COVID-19 patients was analyzed, including 658 (97%) hospitalized and 139 (21%) admitted to the intensive care unit (ICU). Elevated percentage IPF at presentation was predictive of length of hospitalization (P < 0·01) and ICU admission (P < 0·05). Additionally, percentage IPF at the peak was significantly higher among ICU patients than non-ICU patients (6·9 ± 5·1 vs 5·3 ± 8·4, P < 0·01) and among deceased patients than recovered patients (7·9 ± 6·3 vs 5·4 ± 7·8, P < 0·01). Furthermore, IPC at the peak was significantly higher among ICU patients than non-ICU patients (18·5 ± 16·2 vs. 13·2 ± 8·3, P < 0·05) and among patients on a ventilator than those not (22·1 ± 20·1 vs.13·4 ± 8·4, P < 0·05). Our study demonstrated that elevated initial and peak values of percentage IPF and IPC might serve as prognostic biomarkers for COVID-19 progression to severe conditions.


Subject(s)
Blood Platelets/pathology , COVID-19/pathology , Thrombopoiesis , Aged , Blood Platelets/cytology , COVID-19/blood , COVID-19/mortality , Female , Hospitalization , Humans , Intensive Care Units , Male , Middle Aged , Platelet Count , SARS-CoV-2/isolation & purification , Severity of Illness Index
8.
Platelets ; 31(8): 1085-1089, 2020 Nov 16.
Article in English | MEDLINE | ID: covidwho-733448

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a global public health emergency with many clinical facets, and new knowledge about its pathogenetic mechanisms is deemed necessary; among these, there are certainly coagulation disorders. In the history of medicine, autopsies and tissue sampling have played a fundamental role in order to understand the pathogenesis of emerging diseases, including infectious ones; compared to the past, histopathology can be now expanded by innovative techniques and modern technologies. For the first time in worldwide literature, we provide a detailed postmortem and biopsy report on the marked increase, up to 1 order of magnitude, of naked megakaryocyte nuclei in the bone marrow and lungs from serious COVID-19 patients. Most likely related to high interleukin-6 serum levels stimulating megakaryocytopoiesis, this phenomenon concurs to explain well the pulmonary abnormal immunothrombosis in these critically ill patients, all without molecular or electron microscopy signs of megakaryocyte infection.


Subject(s)
Betacoronavirus/pathogenicity , Bone Marrow/pathology , Coronavirus Infections/pathology , Cytokine Release Syndrome/pathology , Disseminated Intravascular Coagulation/pathology , Lung/pathology , Pneumonia, Viral/pathology , Thrombosis/pathology , Adult , Aged , Autopsy , Betacoronavirus/immunology , Bone Marrow/immunology , Bone Marrow/virology , COVID-19 , Cell Nucleus/immunology , Cell Nucleus/pathology , Cell Nucleus/virology , Coronavirus Infections/complications , Coronavirus Infections/immunology , Coronavirus Infections/virology , Critical Illness , Cytokine Release Syndrome/complications , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , Disseminated Intravascular Coagulation/complications , Disseminated Intravascular Coagulation/immunology , Disseminated Intravascular Coagulation/virology , Fatal Outcome , Host-Pathogen Interactions/immunology , Humans , Interleukin-6/biosynthesis , Interleukin-6/immunology , Lung/immunology , Lung/virology , Male , Megakaryocytes/immunology , Megakaryocytes/pathology , Megakaryocytes/virology , Middle Aged , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Severity of Illness Index , Thrombopoiesis/immunology , Thrombosis/complications , Thrombosis/immunology , Thrombosis/virology
9.
Ann Hematol ; 99(6): 1205-1208, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-60295

ABSTRACT

Since December 2019, a novel coronavirus has spread throughout China and across the world, causing a continuous increase in confirmed cases within a short period of time. Some studies reported cases of thrombocytopenia, but hardly any studies mentioned how the virus causes thrombocytopenia. We propose several mechanisms by which coronavirus disease 2019 causes thrombocytopenia to better understand this disease and provide more clinical treatment options.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Pneumonia, Viral/complications , Thrombocytopenia/etiology , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/drug therapy , Coronavirus Infections/therapy , Humans , Leukopenia/etiology , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/therapy , SARS-CoV-2 , Thrombocytopenia/therapy , Thrombopoiesis , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL